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Abstract
Recently, the direct counterfactual communication protocol, proposed by Salih et al (2013 Phys.
Rev. Lett. 110 170502) using a single photon source under ideal conditions (no dissipation, no
phase fluctuation and an infinite number of beam splitters), has attracted much interest from a
broad range of scientists. In order to put the direct communication protocol into a realistic
framework, we numerically simulate the effect of the dissipation and the phase fluctuation with a
finite number of beam splitters. Our calculation shows that the dissipation and phase fluctuation
will dramatically decrease the reliability and the efficiency of communication, and even corrupt
the communication. To counteract the negative effect of dissipation, we propose the balanced
dissipation method, which substantially improves the reliability of the protocol at the expense of
decreasing communication efficiency. Meanwhile, our theoretical derivation shows that the
reliability and efficiency of communication are independent of the input state: a single photon
state or a coherent state.

Keywords: dissipation, direct communication, reliability, phase fluctuation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum information is a rapidly developing area in recent
decades. One of the most important applications in quantum
information is quantum communication. In 1984, Bennett
and Brassard proposed the famous protocol for quantum
key distribution (QKD), known as BB84 [1], which is the
first practical quantum information processor [2, 3]. In the
BB84 protocol, the security of the protocol is guaranteed
using a single photon sent by Alice. For a high loss or an
imperfect single photon state, Hwang proposed a decoy-
pulse method to guarantee security under photon-number-
splitting attack for BB84 [4]. Recently, A Rubenok pro-
posed a new QKD protocol that is immune to attack on the
vulnerabilities of single-photon detectors [5]. Another
celebrated QKD protocol is E91 [6], which is based on
quantum entanglement. At same time, using the electro-
magnetic field amplitudes of ‘non-classical’ light beams

(squeezed or entangled light) for QKD also attracts much
attention [7–12].

Recently, Salih et al proposed a protocol to realize direct
counterfactual communication (no need for a prior quantum
key distribution) [13] based on previous work [14], which
showed how to make an interaction-free measurement [15–
17]. In [13], the ‘chained’ quantum Zeno effect and inter-
ference of optical paths are used to achieve information
transmission between Alice and Bob without any photon
traveling between them, by using a single photon source.
However, in order to have direct communication, a large
number of perfect beam splitters (BSs) (8000 for 90% effi-
ciency [13]) and no dissipation in all paths are required.

In [13], the authors considered the effects of two kinds of
imperfection and one source of noise on the performance of
counterfactual communication. One of the imperfections
arises from the sensitivity of the detectors, which only affects
the efficiency of communication and does not cause detection
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errors. Another imperfection arises from the inaccuracy of θ
(with an error Δθ), which presents the transmittivity and
reflectivity of a BS with ‘transmittivity’ + ‘reflectivity’ = 1.
Please note that they still assumed that there is no dissipation
or phase fluctuation in the devices (BSs, mirrors and field
paths). The noise in [13] results from the partial transmission
channel being blocked by an object other than Bobʼs, and
does not result from the phase fluctuation or the dissipation in
the whole direct communication protocol. However, in a real
experiment, the finite number of BSs (usually fewer BSs is
better), the dissipation (including the BSs themselves) and the
phase fluctuation of the paths could not be avoided [18–20].
Our simulation results show that the dissipation and phase
fluctuation have a great influence on the reliability of com-
munication; for example, 1% dissipation in each field path
can crash the communication protocol when M= 20 and
N = 50; see figure 2.

Here we consider the effect of the dissipation and the
phase fluctuation on the direct communication, and analyze
how the reliability of the direct communication can be pre-
served. In section 2, taking into consideration the finite
number of BSs, the dissipation and the phase fluctuation, we
theoretically derive the transmission matrix between the input
operators and the output operators, which is independent of
the input states. In section 3, a numerical simulation is carried
out to show the effects of the dissipation and the finite number
of BSs. To improve the communication for a finite number of
BSs and for dissipation, we propose the balanced dissipation
method. The phase fluctuation effect is analyzed in section 4,
and an example is given to shown how the finite BSs, the
dissipation and the phase fluctuation affect the communica-
tion. In section 5 we give the conclusions.

2. The theoretical result with the dissipation and
phase fluctuation effect

Consider the same setup as in [13], shown in figure 1(a),
which is composed of two chains of BSs, the inner chain and
the outer chain. The two chains are formed by −M( 1) and

−N( 1) head–tail connected Mach–Zehnder interferometers
(MZIs) [13]. Alice and Bob can use the setup to have infor-
mation communication with a single photon field (or a
coherent field) source. The outer chain contains M BSs (green
color) with the same reflectivity θ=R cos M

2 where
θ π= M(2 )M and −M( 1) mirrors (black color in
figure 1(a)), which are in the hands of Alice. Each inner chain
is formed by N BSs (in blue color) with the same reflectivity
of θ=R cos N

2 where θ π= N2N and −N2( 1) mirrors. The
reflectivity of all the mirrors is 100% without the dissipation.
The inner chain (figure 1(b)) has two parts, the BSs (blue
color) and half of its mirrors in the hands of Alice and the
other half of the mirrors in the hands of Bob. From the blue
color BSs to the mirrors in Bobʼs hands, the field needs to
pass through the transmission channel, which is publically
accessible. Bob can block the paths in his hands by inserting
blocks (small red color rectangles). The two outputs of each

inner chain go to the outer chain and detector D i3 , respec-
tively. Alice sends out her field, a single photon; Bob can
choose to insert his blocks in the paths in his side or not, and
Alice measures the counting received by the two detectors,
D1, and D2. For no dissipation and infinite M and N, when
Bob inserts or does not insert his blocks, Alice sending one
photon out will see D2 or D1 click (perfect 100% detection
probability). Hence, Alice will know whether Bob inserts or
does not insert the blocks.

In a real experiment, the dissipation (including the BSs
and mirrors themselves) and the phase fluctuation of the paths
could not be avoided. Here we group all the paths in
figure 1(a) into three groups, left (paths at the left line),
middle (paths in the middle line) and right (paths in the right
line). We assume the dissipation of each path in the left group
is the same (κ1), the dissipation of each path in the middle
group is the same (κ2) and the dissipation of each path in the
right group is the same (κ3). If Bob choose to insert blocks in
his paths, we have κ = 13 . The dissipation in each path can be
theoretically simulated by adding a BS in the corresponding
path, as shown in figure 1 by the light cyan color, and the
reflected energy is proportional to the intensity dissipation, κi.
The dissipation in a path can be theoretically calculated by
multiplying by a factor of κ−1 . Therefore, for example,
the dissipation of one MZI in the inner chain can be repre-

sented by a matrix
κ

κ

−

−

1 0

0 1

2

3

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥. The effect of the

phase difference between the two paths of each MZI in the
inner chain (which is random), φ, can be represented by

= φM
1 0

0 e
P i

⎡
⎣⎢

⎤
⎦⎥. Thus, the dissipation and phase fluctuation of

one MZI in the inner chain can be represented by a matrix,

Figure 1. The scheme of direct communication.

2

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 115506 F Li et al



κ

κ

−

−φ

1 0

0 e 1

2

i
3

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥. The modes reflected by each added

BS (for dissipation) are orthogonal to each other, and they are
in vacuum for no input field. Therefore, we can treat all
thereflected modes as one reservoir. The input field, a1

†

(together with two vacuum inputs a0
† and ′a0

†), is transformed
into two outputs, a aandL

†
R
†, at D1,2, the modes a i3

† at D i3 and

the reservoir modes ares
† (due to dissipation and blocks).

2.1. The transmission matrix of the inner chain

To calculate the whole protocol, first, let us analyze the
transmission matrix of the inner chain. The incident field of
the inner chain (see figure 1(b)) is denoted by ′a1

†, the input
vacuum is denoted by ′a0

† and two outputs are denoted by ′al
†

and ′ar
†. Due to the dissipation, some photons go to the

reservoir associated with the inner chain. Thus, the input ′a1
†

(the vacuum ′a0
† has no contribution to the output) is trans-

mitted into ′al
†, ′ar

† and ′ares
† with

′ → ′ ′ + ′ ′ + ′ ′a M a M a M a (1)1
†

11 l
†

21 r
†

res res
†

where ′ares
† is the creation operator of photons in the reservoir

associated with the inner chain, and ′ ′M M,11 21 and ′Mres are
transmission coefficients with

′ + ′ + ′ =M M M 111
2

21
2

res
2 due to the photon number

conservation. The two coefficients, ′M11 and ′M21, are
calculated in appendix A,

∏

θ θ
θ θ

κ θ κ θ

κ θ κ θ

′ =
−

×
− − −

− −

×

φ φ
= −

[ ]M

a

1 0
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

1
0

(2 )

N N

N N

j N

N N

N N

11

1 ,,, 1

2 2

i
3

i
3mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

∏θ θ
θ θ

κ θ κ θ

κ θ κ θ

′ =
−

×
− − −

− −φ φ

= −
[ ]M

b

0 1
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos
1
0

(2 )

N N

N N j N

N N

N N

21

1 ,,, 1

2 2

i
3

i
3mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

where φmj is the relative phase in the mth outer chain and jth
inner chain, and follows the random normal distribution

( φ = −
π Δ

φ

Δ
P ( ) expmj

1

2 2

mj

inner

2

inner
2

⎛
⎝⎜

⎞
⎠⎟; Δinner is the phase fluctua-

tion of the inner chain). Here we assume that the phase
fluctuation of each inner chain is the same, Δinner.

2.2. The transmission matrix of the whole protocol

The inner chain is one of the two paths of each MZI in the
outer chain. The input field of the inner chain comes from the
outer chain. The left outputs of the inner chain will go to the
outer chain, and the right outputs (here indicated with a i

†
3 )

will be detected by Alice with detector D i3 ; see figure 1(a).
The final outputs of the outer chain, aR

† and aL
†, will be

detected by D1 and D2 in Aliceʼs hands. Using the method
discussed above, we can obtain the total transformation for
the whole protocol; see appendix B.

∑→ + + +
−

a M a M a M a M a (3)
i

M

i i1
†

1 L
†

2 R
†

1

3 3
†

res res
†

where

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

a

1 0
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(4 )

M M

M M

k M

M M

M M

1

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

b

0 1
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(4 )

M M

M M

k M

M M

M M

2

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

∏

θ θ
θ θ

κ θ κ θ

κ θ κ θ

=
−

×
− − −

− −

×

φ φ
= −

[ ]M

M

c

0 1
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

0

(4 )

i
N N

N N

j N

N N

N N

i

3

1 ,,, 1

2 2

i
3

i
3

(inner)

mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

d

0 1
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(4 )

i
M M

M M

k i

M M

M M

(inner)

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

and (due to energy conservation)

∑= − − −
=

−

M M M M1 (5)
i

M

ires 1
2

2
2

1

1

3
2

where ϕk is the phase fluctuation of the left path in the kth
outer chain, and follows the random normal distribution

( ϕ = −
π Δ

ϕ

Δ
P ( ) expk

1

2 2

k

outer

2

outer
2

⎜ ⎟
⎛
⎝

⎞
⎠; Δouter is the phase fluctua-

tion of the left path of the outer chain).
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2.3. Output field

In the above derivation, we use the operator transformation,
while the input state is not specified. That is to say, we can
use any input state for further derivation. We assume that the
state of the input field can be written in the form

ψ = ∣ 〉( )f a {0} (6)i 1
†

with f x( ) is an arbitrary function of the argument, x. Based
on equation (3), the state of the output fields can be written as

∑∣ 〉ψ = + + + ∣ 〉
−

f M a M a M a M a {0} .

(7)

f
i

M

i i1 L
†

2 R
†

1

3 3
†

res res
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

If the input state is a single photon, we have
=f a a( )1

†
1
†, and the final state is

∑∣ 〉ψ = + + + ∣ 〉

=

−

−

M a M a M a M a

M M M M M

{0}

, , ... , .

(8)

f
i

M

i i

M

1 L
†

2 R
†

1

3 3
†

res res
†

1 2 31 3( 1) res

For a coherent state input we have = α α−∣ ∣f a( ) e e a
1
† 22

1
†
;

the final state is

∣ 〉ψ

α α α

α α

= ∣ 〉

=

×

∑α
α

−∣ ∣
+ + +

− −

−

M M M

M M

e e {0}

...

(9)

f

M a M a M a M a

M M

2

1 1 2 2 31 31

3( 1) 3( 1) res res

i

M

i i2 1 L
†

2 R
†

1

3 3
†

res res
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

In the above, M1
2, M2

2 and M i3
2 are the probabilities

of a photon for the single photon input (or of intensities for
the coherent state input) detected by D1, D2 and D i3 , respec-

tively, and Mres
2 is the probability of a photon (or intensity)

leaked out to the reservoir (some in Aliceʼs hands and others
in the transmission channel). Note that D1, D2 and D i3

( = … −i M1, , 1) are in the hands of Alice. From
equations (8) and (9) we know that the proportions of field

energy to each detector and the reservoir are independent of
the input state. If we consider the ratios, we can obtain the
same result with a single photon or by using a coherent state.
For s single photon input, only one detector can have a click,
or all detectors have no click if the one photon goes to the
reservoir. If no click, we can throw away this communication
(no information exchanged between Alice and Bob). For the
single photon input there is no photon in the transmission
channel when D1 or D2 has a click (counterfactual), while for
the coherent state input there are photons in the transmission
channel (not counterfactual). For the two different inputs, the
detection probabilities (efficiencies) of D1 and D2 (W1 and
W2) are the same, and also their ratios (reliabilities). In the
experiment, in order to make the optical lengths for the two
paths in each MZI equal, coherent light is always used for the
adjustment of the optical lengths.

For finite N and M, in order to measure how good the
direct communication is, we introduce two quantities. (1) The
probabilities (also called efficiencies), W1

(nb) (together with
W2

(nb)) for no blocks and W2
(wb) (W1

(wb)) for with blocks, which
represent the efficiency of the direct communication. Large
W1

(nb) andW2
(wb) mean high efficient usage of the input photon

for the communication. (2) The reliabilities,
η = W W(nb)

1
(nb)

2
(nb) for no blocks and η = W W/(wb)

2
(wb)

1
(wb)

for with blocks, which represent how reliable the commu-
nication is. For no blocks we want →W 02

(nb) , while for with
blocks we want →W 01

(wb) , so that Alice immediately knows
that Bob inserts (or does not insert) his blocks when she sees
the click of D2 (or D1). The larger η(nb) and η(wb) are, the more
reliable the communication is. For a perfect communication,
we have =W 11

(nb) and η = ∞(nb) for no blocks and =W 12
(wb)

and η = ∞(wb) for with blocks. The higher the values for the
four quantities (two efficiencies and two reliabilities), the
better the communication is.

In a real experiment, the dissipation also has fluctuation.
We have assumed a Gaussian dissipation fluctuation,

κ = −
π Δ

κ κ
Δ

−( )P ( ) exp1

2

( )

2i

i

i

2

2
, with a width of Δ κ= 0, 0.1i i,

and our simulation found that the dissipation fluctuation has
almost no effect, because the phase fluctuation is much more
important than the dissipation fluctuation. That is to say,
compared with the phase fluctuation, the dissipation fluctua-
tion is negligible.

3. Numerical result of the dissipation effect and
balanced dissipation method

In this section, we consider only the effect of dissipation, by
setting the phase fluctuations φ ϕ= = 0mj k . Here we set the
energy of the input state to be unity. We discuss the pro-
portions of energy entering each detector. In the following
diagrams, the energies received by detectors D1, D2 and D i3

are labeled by W1, W2 and W i3 , while the dissipated energy by
Wres. Please note that + + ∑ + = =W W W W W 1i1 2 3i res input

as the input energy is set to unity.

Figure 2. The reliability as a function of the dissipation, κ κ=1 2,
where the transmission channelʼs dissipation is κ κ= 53 2 The figure
shows that η w(wb) sharply decreases with a dissipation increase.
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To demonstrate the importance of the dissipation effect in
direct communication, we plot figure 2, the reliability as a
function of the dissipation, κ κ=1 2, where the transmission
channelʼs dissipation is κ κ= 53 2. From the two dashed
curves, M = 20, N = 50 (blue for η(nb), green for η(wb)), we can
clearly see that η(wb) sharply decreases with a dissipation
increase. When κ κ= = × −3 101 2

3, the figure shows
η ≃ 1(wb) , which means that Bob cannot transmit the ‘block’
information to Alice. Comparing the dashed curve and solid
curve, we know that the reliability decreases faster when N is
larger. However, to realize direct communication, → ∞N is
needed [13]. Therefore, in order to put [13] into a more rea-
listic framework, investigations of the effect of dissipation
and phase fluctuation are very necessary.

3.1. No blocks

If Bob does not insert his blocks, the interference occurs
between the two paths of each MZI in the inner chain
(figure 1(b)). Without dissipation, no blocks will result in
complete interference, so that no photon enters ′D1 (photon
completely entering ′D2). If we have the same dissipation
(balanced dissipation) for the two paths of each MZI in the
inner chain, κ κ=2 3, complete interference can also be
achieved. For balanced dissipation, we still have complete
interference in the inner chain, and there is no photon entering

′D1 , while the probability of the photon entering ′D2 decreases
with increasing dissipation. In figure 2, we plot the probability
ratio ′ ′W W2 1 versus κ2 with κ = −103

3, N = 12 and no blocks.
Please note the peak (infinity) at κ κ=2 3 due to ′ =W 01 ,
because of the complete interference. For no blocks, with
balanced dissipation for each MZI of the inner chain
κ κ=( ),2 3 the photon entering the inner chain will not return
to the outer chain ( ′ =W 01 ), which is independent of N (as for
no dissipation). Therefore, balanced dissipation in the inner
chain will not affect the outer chain. That is to say, for κ κ=2 3

and no block, the ratio of the photon probabilities (effi-
ciencies) entering D1 and D2 is only determined by M, and is
independent from the dissipation in the paths of the left group,
κ1, the same as the case of no dissipation. The ratio (also the
reliability) is η π π= M Mcos ( 2 ) sin ( 2 )(nb) 2 2 for no blocks
and balanced dissipation; see figure 4(a).

3.2. With blocks (κ3 ¼ 1)

Let us first consider the case without dissipation. In
figure 4(b), we plot the reliability, η(wb), when Bob blocks his
mirrors versus N andM. Please note that η(nb) (no blocks) does
not depend on N, and η(wb) (with blocks) always decreases
with M for fixed N. Larger M gives larger η(nb) (no blocks),
while larger N gives larger η(wb) (with blocks) for fixed M. In
principle, as both M and N tend to infinity (the two ratios both
go to infinity), the detection probability of the photon by D1 or
D2 goes to 100%, and consequently direct communication
(counterfactual for single photon input) between Alice and
Bob is achieved [13].

Now let us consider the influence of the dissipation. The
energy dissipations in the three path groups (indicated in

figure 1(a)) are denoted by κ1, κ2 and κ3. In figure 5, we plot
the reliability, η(wb) (with blocks), versus N and M, with
κ κ= = −102 3

4 (balanced dissipation) and κ κ= 31 2. Please
note that the loss of the best quality BS currently available is
at the order of −10 4 to −10 5. When the dissipation is included,
we find that η(nb) (no blocks) still increases with M under
balanced dissipation in the inner chain, equivalent to no dis-
sipation (see figure 4a). For no blocks and under balanced
dissipation (κ κ=2 3), the reliability (η(nb)) does not depend on
the dissipation (κ1,2,3), and the efficiency (W1

(nb)) only depends

on κ3. However, the reliability η(wb) increases, and then
decreases with N if M is larger than a certain value (see
figure 5), due to the dissipation. In other words, for the large
M, N region, the reliability η(wb) decreases withM and N. Here
we ask ourselves ‘Can we increase the reliability (η(wb)) when
the dissipation is included?’

3.3. Improvement of the reliability η(wb) by the balanced
dissipation method

When Bob inserts the blocks in his paths, from the above
analysis we know that some photons will be lost due to the
blocks for finite N (note no photon loss only for infinite N and
no dissipation). The portion of the photon probability entering
the inner chain will return to the outer chain, which results in
interference between the paths of the left group (the left paths
of the out chain) and the paths of the middle group (the left
paths of the inner chain) at the BSs of the outer chain (each
MZI of the outer chain). Thus, as result of unbalanced
interference between the left path and middle path, the output
state at D1 is not the vacuum for finite M, even with no
dissipation. As discussed for no blocks, the use of balanced
dissipation (κ κ=2 3) in the inner chain makes the inner chain
equivalent to no dissipation. Can we use the idea of balanced
dissipation in the outer chain to obtain high reliability η(wb)

(with blocks), even η → ∞(wb) ? The answer is yes. The
interference at these BSs of the outer chain is dependent on κ1;
that is to say, the interference can be adjusted by κ1, and so
can the output at D1. When Bob blocks his paths (κ = 13 ), the
proportion of photons returned to the outer chain from the

inner chain is θ κ θ− −( )cos 1 cosN N
N2

2
2( 1)

, which can be
viewed an equivalent dissipation in the paths of the middle

group, κ θ κ θ′ = − − −( )1 cos 1 cosN N
N

2
2

2
2( 1)

. If we
introduce a dissipation in the paths of the left group (outer
chain),

κ θ κ θ= − − −( )1 cos 1 cos (10)N N
N

1
2

2
2( 1)

we can achieve a complete interference at the BSs of the
MZIs of the outer chain, which results in the vacuum state for
the output at D1, and consequently we have η → ∞(wb)

(highest reliability). Please note that κ2 can be zero (no
dissipation) in equation (10). By adjusting the dissipation,
Alice and Bob with finite N and M can have a better
communication compared to the case of no dissipation. In
figure 6, we plot the influence of κ1 and κ2 on η(wb) for N = 12
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and M = 6, where we can see η → ∞(wb) ( =W 01 , no photon
probability for D1) when equation (10) is satisfied.

Here we would like to emphasize that η(nb) (no blocks) is
not affected by κ1, if we set the balanced dissipation in the
inner chain κ κ=3 2 (including κ κ= = 03 2 ), because there is
no photon probability from the inner chain back to the outer
chain. Therefore, we can manipulate the dissipation κ1 to
maximize η(wb) (with blocks), which has no effect on η(nb) (no
blocks). By using balanced dissipation (for both inner and
outer chains), we can improve the communication between
Alice and Bob with a few N and M.

However, the benefit of this method for the reliability
improvement is not free. What is the expense? The input
photon will go to D1, D2, D s3 and the reservoirs, with prob-
abilities W wb nb

1
( , ), W wb nb

2
( , ), W s

wb nb
3
( , ) and W wb nb

res
( , ), respectively

(see equation (3)). In table 1, we list the probabilities with the
blocks inserted. Here we focus on the efficiency (the photon
probability entering D2), W2

(wb). Without dissipation
(κ κ= = 01 2 ), and M = 6, N = 12, the efficiencyW2

(wb) is 62%;
with the balanced dissipation method (determined by
equation (10)) it decreases to 36%. The balanced dissipation
can give very high reliability (η → ∞(wb) ) at the expense of
reducing the efficiency (W2

(wb)); see table 1. The reduction is
due to the photons lost to the reservoirs; see Wres

(wb) in table 1.
For large N and M, the balanced dissipation method will
greatly reduce the efficiency (W2

(wb)). Meanwhile, the photon
probability to D s3 is small, less than 2%.

Now let us consider the total photon probability in all the
transmission channels, from every BSN to the corresponding
blocks in figure 1,WTr

(wb), which is listed in the last columns in
table 1. It is clear that the balanced dissipation method can
also reduce the photon probability in the transmission chan-
nel, which is another benefit of the balanced dissipation
method for finite N and M.

3.4. The performance of the balanced dissipation method
when the transmission channelʼs dissipation κ3 is large

In the above calculation, we have assumed that the dissipation
of the three kinds of field channel are tiny, such as κ ≈ −10 4.

For a transmission channel some kilometers long, however, it
is possible that κ3 (the transmission channelʼs dissipation) is
very large. Suppose κ = 0.993 , which means the photon is
almost dying before it arrives on Bobʼs side, thus the inter-
ference of the inner chain is always broken down, no matter
whether Bob inserts his blocks or not; see figure 1. Conse-
quently, the probability of D , D1 2 click is independent of
Bobʼs action, and the communication fails. Please note that
the success of the protocol is based on the interference: when
Bob does not insert blocks, he builds the inner chainʼs
interference ( ′D1 click); while if Bob does insert blocks, he
destroys the inner chainʼs interference and builds the Zeno
effect in the middle path ( ′D2 click). However, unbalanced
dissipation (κ κ≫3 2) of two paths will inhibit the inter-
ference, or even destroy it; see figure 3. For example, in the
case of M = 6, N = 12 and κ κ= = −101 2

4, if κ = 0.993 (a very
large dissipation in the transmission channel), we obtain

= =W W0.038, 0.0621
(wb)

1
(nb) and

= =W W0.56, 0.572
(wb)

2
(nb) . ≈ > ≈W W W W2

(wb)
2
(nb)

1
(wb)

1
(nb),

independent of Bobʼs action. Thus, Alice cannot obtain
information.

To determine how the transmission channelʼs dissipation
κ3 influences the communication, in figure 7 we plot the
reliability η(nb) as a function of the transmission channelʼs
dissipation κ3, for different M, N combinations. Here we
assume that κ κ= = −101 2

4, as the dissipation of these two
paths can be suppressed technologically in Aliceʼs laboratory.
Comparing the red dotted curve (M = 20, N = 30) and cyan
dashed curve (M = 20, N = 50) in figure 7, we see that
decreasing N can improve η(nb), because the same unbalanced
dissipation will disturb the interference more significantly if N
is larger. However, for each M, N combination, there is a
largest dissipation κ3, over which the communication fails.
So, a very large dissipation can crash the communication
protocol [13]. For example, κ = 0.583 results η ≃ 1(nb) when
M = 6, N = 12.

To test the performance of the balanced dissipation
method (equation (10)), we calculate the reliability and the
efficiency as a function of κ2, when κ = 0.33 (a large dis-
sipation in the transmission channel); see figure 8 (Bob inserts

Table 1. The efficiency (the photon probability entering D2), W2
(wb), and the total photon probability in all paths in the transmission channel,

WTr
(wb), for different dissipations and M, N, when Bob inserts the blocks (κ = 13 ). With the balanced dissipation method, we have

η= = ∞W 0;1
(wb) (wb) . Please note that we can manipulate the dissipation κ1 to maximize η(wb), which has no effect on η(nb).

M, N No dissipation, =W 0res
(wb) Balanced dissipation, κ1 see equation (10),

η= = ∞W 0;1
(wb) (wb)

κ κ= = 01 2 κ = 02 κ = −102
4

W2
(wb) W3

(wb) η(wb) WTr
(wb) W2

(wb) W3
(wb) Wres

(wb) WTr
(wb) W2

(wb) W3
(wb) Wres

(wb) WTr
(wb)

6,12 0.612 0.027 22.5 0.326 0.357 0.020 0.380 0.244 0.354 0.020 0.383 0.243
12,20 0.536 0.020 13.8 0.406 0.257 0.013 0.466 0.264 0.251 0.013 0.476 0.260
20,30 0.490 0.015 10.6 0.449 0.209 0.009 0.512 0.270 0.197 0.009 0.534 0.260
20,50 0.641 0.007 33.1 0.333 0.392 0.005 0.360 0.244 0.355 0.005 0.411 0.229
30,50 0.517 0.009 13.2 0.436 0.239 0.005 0.486 0.270 0.206 0.005 0.543 0.247
40,100 0.633 0.003 32.6 0.344 0.382 0.003 0.368 0.248 0.258 0.002 0.548 0.192
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blocks) and figure 9 (Bob does not insert blocks). Please note
that we do not let κ κ=2 3. Large κ2 (such as κ κ= = 0.32 3 )
will result in κ ≃ 11 (see equation (10)), and consequently
there is no click in D1 or D2.

The encouraging advantage is that we have a great
reliability η → ∞(wb) when we adopt the balanced dissipation
method. Meanwhile, the reliability η ≃ 8.0(nb) just has a very
slight drop from η = 9.7(nb) when κ κ= = −101 2

4. Although
figures 8 and 9 have shown that the efficiencies W2

(wb) and

Figure 3. The effect of the dissipation, ′ ′W W2 1 , versus κ2 with
κ = −103

3 and N = 12. If we have the same dissipation (balanced
dissipation) for the two paths of each MZI in the inner chain,
κ κ=2 3, complete interference can also be achieved, in which no
photon enters ′D1 .

Figure 4. The reliability versus N and M without dissipation: (a) Bob
does not block the paths (η(nb)); (b) Bob blocks the paths ηlog( )(wb) ,
which increase with M.

Figure 5. The reliability ( ηlog( )(wb) ) versus N and M with dissipation
κ κ= = −102 3

4 and κ κ= 31 3. For the larger M, N region, the
reliability η(wb) decreases with M and N.

Figure 6. The influence of κ1 and κ2 on η(wb) for N = 12 and M = 6.

Figure 7. The reliability η(nb) versus the transmission channelʼs
dissipation κ3, for different M, N combinations: blue dot–dashed
curve, M = 6, N = 12; green solid curve, M = 12, N = 20; red dotted
curve, M = 20, N = 30; cyan dashed curve, M = 20, N = 50, with
κ κ= = −101 2

4. To realize a reliable communication, a large
η > 1(nb) is needed.
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W1
(nb) have a decrease, they are still acceptable in experiment

when compensation dissipation κ2 is small. It is true that, even
for a large κ3, we can increase η(nb) further by increasing κ2

(κ κ→2 3), but the efficiencies W2
(wb) and W1

(nb) will decrease
to zero. Therefore, the balanced dissipation method has a
better performance with a small dissipation rather than a large
dissipation.

4. Numerical result of the phase fluctuation effect

Now let us calculate the influence of the random phase
fluctuation. For the effect of the phase fluctuation, we need to
average the random phases, which are a Gaussian distribution
with various widths. We use the computer to perform the
average. Let first consider only the phase fluctuation by set-
ting zero dissipation (κ κ κ= = = 01 2 3 ). From the above
discussion, for no blocks we know that the port to detector ′D1
is a dark one, ′ =W 01 . The phase fluctuation will disturb the
interference of the inner chain MZIs, and the dark port will no
longer be dark, ′ ≠W 01 . In figure 10, we plot the photon
probability ′W1 versus the fluctuation width Δinner. It is clear
that the leakage to the dark port ′D1 ( ′W1) increases with the
increasing of the fluctuation (Δinner) and N. In figure 10, we
find that the phase fluctuation of Δ = 0.05inner will result in
6%, 13% and 23% photon leakage to the previous dark port

′D1 for N = 20, 50 and 100, respectively. Note that 6% leakage
might destroy the direct communication.

For the whole protocol, we calculate the efficiencies
(W1

(nb) and W2
(wb)) and the reliabilities (η(nb), η(wb)) versus the

phase fluctuation Δinner in figure 11, with balanced dissipation
(κ κ= = −102 3

4 and κ1 determined by equation 10) for dif-
ferent N and M combinations. Here we assume that
Δ Δ= 2outer inner. In figure 11, we find that the efficiencyW2

(wb)

shows almost no decrease, but the reliability η(wb) decreases
very quickly with the phase fluctuation Δinner.

For the case of M = 6 and N = 12 with no phase fluc-
tuation and no dissipation, we know η = 22.5(wb) from
table 1, and η = 13.9(nb) from figure 4(a). With the balanced
dissipation method, the red curve in figure 11(a) tells us that
η ≫ 100(wb) for small phase fluctuation (Δ < 0.01inner ), and
η ≈ 13.9(nb) (almost the same); see the red curve in
figure 11(b). That is to say, for small phase fluctuation, the
balanced dissipation can also greatly improve the reliability of
the communication η(wb), and keep η(nb) almost the same. For
M = 30 and N = 50 with no phase fluctuation and no dis-
sipation, we know that η = 13.2(wb) from table 1, and
η = 364(nb) from figure 3(a). The green curve in figure 11(a)
(under balanced dissipation) tells us that η ≫ 100(wb) for
small phase fluctuation (Δ < 0.008inner ). Meanwhile, we still
have η ≈ 364(nb) (almost the same); see the green curve in
figure 11(b). Thus, the balanced dissipation method makes the
realization of direct communication practical in experiment.
Please note that, for large phase fluctuation, the advantage of
the balanced dissipation method to improve the reliability of
η(wb) will disappear. It is predictable that the communication
will fail for large phase fluctuation.

5. Conclusion

We have numerically simulated the effect of the dissipation
and the phase fluctuation with a finite number of BSs in a
direct communication protocol. Our calculation shows that,
taking into consideration the dissipation, the reliability
decreases with M and N in the larger M, N region. To

Figure 8. For the combination M = 12 and N = 20, the efficiency
W2

(wb)(Bob inserts blocks) as a function of κ2, which can be adjusted
by Alice. Here, we let κ = 0.33 (a large dissipation in the
transmission channel), and κ1 following equation (10), which
guarantees η → ∞(wb) .

Figure 9. For the same parameter setup as figure 8 (M = 12, N = 20
and κ1 following equation (10)), the efficiency W1

(nb) and η(nb) (does
not insert blocks) as a function of κ2.

Figure 10. The output of the inner chain, ′W 1, versus the phase
fluctuation, Δinner, for no dissipation with N = 20 (blue solid curve),
50 (red dashed curve) and 100 (green dotted curve).
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counteract the negative effect of dissipation , we proposed
the balanced dissipation method, which substantially
improves the reliability of the protocol at the expense of
decreasing communication efficiency. Our work puts the
direct communication protocol into a more realistic fra-
mework. Our theoretical derivation, based on operator
transmission (from input field operator to output operators),
shows that the probabilities of the field going into the D1

and D2 are independent of the input state. Thus, the relia-
bility and efficiency of communication using a single
photon source are same as those using a coherent source.
For single photon input, we need to use single photon
detectors, while for coherent state input, we need intensity
detectors. In experiments, the coherent state is much easier
to produce and to control compared with the single photon

state, and can be used to prove the direct communication
property of the protocol, except the counterfactual
property.
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Appendix A. The inner chain

Let us consider one of the MZIs in the inner chain, for
example the first one; see figure 12. The inputs are ′a1

† and
′a0
†, while the outputs are ″al

† and ″ar
† with two dissipations κ2

and κ3. We can use the matrix method to obtain the outputs.
The two BSs can be expressed by the same matrix

θ θ
θ θ

−cos sin
sin cos

⎡
⎣⎢

⎤
⎦⎥. The two dissipations and the phase fluc-

tuation can be expressed by the matrixes κ−φ
1 0

0 e 1i
3mj

⎡
⎣⎢

⎤
⎦⎥,

and
κ−1 0

0 1
2

⎡
⎣⎢

⎤
⎦⎥ where φmj is the relative phase in the mth

outer chain and jth inner chain, and follows the random

normal distribution ( φ = −
π Δ

φ

Δ
P ( ) expmj

1

2 2

mj

inner

2

inner
2

⎛
⎝⎜

⎞
⎠⎟; Δinner is

Figure 11. The efficiencies (photon detection probabilities) and reliabilities, (a) W2
(wb), η(wb) (Bob does insert blocks) and (b) W1

(nb), η(nb) (Bob
does not insert blocks), versus the phase fluctuation Δinner: red solid curve for M = 6, N = 12, blue dot-dashed curve for M = 20, N = 30, and
green dashed for M = 30, N = 50.

Figure 12. MZI.
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the phase fluctuation of the inner chain). Here we assume that
the phase fluctuation of each inner chain is the same, Δinner.

The relation between the output and the inputs can be
written as

θ θ
θ θ

κ

κ

θ θ
θ θ

κ θ κ θ

κ κ θ θ

″
″

=
− −

−

×
− ′

′

=
− − − ′

− + − ′

φ

φ

φ

( )
( )

a

a

a

a

a

a

cos sin
sin cos

1 0

0 e 1

cos sin
sin cos

1 cos e 1 sin

1 e 1 sin cos
.

(A1)

N N

N N

N N

N N

N N

N N

l
†

r
†

2

i
3

1
†

0
†

2
2 i

3
2

1
†

2
i

3 1
†

mj

mj

mj

⎪

⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

Equation (A1) can also be expressed as

κ θ κ θ

κ κ θ θ

′ → − − − ″

+ − + − ″

φ

φ

( )
( )

a a

a

1 cos e 1 sin

1 e 1 sin cos

(A2)

N N

N N

1
†

2
2 i

3
2

l
†

2
i

3 r
†

mj

mj

where we have deleted the vacuum, as it has no contribution
to the outputs.

All the MZIs in the inner chain can be derived the same
way as in equation (A1). Consequently, the outputs of the
inner chain can be obtained,

∏

θ θ
θ θ

θ θ
θ θ

κ θ κ θ

κ θ κ θ

′
′

=
− −

×
− − −

− −

×
′
′

φ φ
= −

a

a

a

a

cos sin
sin cos

cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

.

(A3)

N N

N N

N N

N N

j N

N N

N N

l
†

r
†

1 ,,, 1

2 2

i
3

i
3

1
†

0
†

mj mj

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The same as (A2), the total transformation can be
rewritten as

′ → ′ ′ + ′ ′a M a M a (A4)1
†

11 l
†

21 r
†

where

∏

θ θ
θ θ

κ θ κ θ

κ θ κ θ

′ =
−

×
− − −

− −

×

φ φ
= −

[ ]M

a

1 0
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

1
0

(A5 )

N N

N N

j N

N N

N N

11

1 ,,, 1

2 2

i
3

i
3mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

∏

θ θ
θ θ

κ θ κ θ

κ θ κ θ

′ =
−

×
− − −

− −

×

φ φ
= −

[ ]M

b

0 1
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

1
0

.

(A5 )

N N

N N

j N

N N

N N

21

1 ,,, 1

2 2

i
3

i
3mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

Appendix B. The outer chain

The left output of the inner chain will go back to the outer
chain. The input of the inner chain comes from the outer chain
together with the vacuum. Hence, the inner chain can be
regarded as the right path of the MZIs of the outer chain with
dissipation − ′M1 11

2. In this way, the coefficients (M1 and M2)

of aR
† and aL

† in equation (3) can be calculated from

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

a

1 0
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(B1 )

M M

M M

k M

M M

M M

1

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

b

0 1
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(B1 )

M M

M M

k M

M M

M M

2

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

where ϕk is the phase fluctuation of the left path in the kth
outer chain, and follows the random normal distribution

( ϕ = −
π Δ

ϕ

Δ
P ( ) expk

1

2 2

k

outer

2

outer
2

⎜ ⎟
⎛
⎝

⎞
⎠; Δouter is the phase fluctua-

tion of the left path of the outer chain).
The coefficient, M i3 , is one of the two output fields of the

ith inner chain (see figure 1(a)). Please note that M i3 is pro-
portional the input field of the ith inner chain, which is one of
the two output fields of the ith MZI of the outer chain,

′M ai (inner) r
†. The output of the ith BSM of the outer chain can

be obtained with the same method as in appendix A with θN

replaced by θM , and the dissipation matrix

κ

κ

−

−

1 0

0 1

2

3

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ replaced by

κ−
′

ϕ

M

e 1 0

0

i
1

11

i⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, so
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that we have

∏

θ θ
θ θ

κ

θ θ
θ θ

=
−

× −
′

×
−

ϕ

= −

[ ]M

M

0 1
cos sin
sin cos

e 1 0

0

cos sin
sin cos

1
0

(B2)

i
M M

M M

k i

M M

M M

(inner)

1,2 ,,, 1

i
1

11

k⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

with the coefficient Mi (inner) in hands, the coefficient of the
output operator to D i3 , M i3 , can be given:

∏

θ θ
θ θ

κ θ κ θ

κ θ κ θ

=
−

×
− − −

− −

×

φ φ
= −

[ ]M

M

0 1
cos sin
sin cos

1 cos 1 sin

e 1 sin e 1 cos

0
.

(B3)

i
N N

N N

j N

N N

N N

i

3

1 ,,, 1

2 2

i
3

i
3

(inner)

mj mj

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥
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